

Contents

Preface to the Second Edition v
Preface to the First Edition vii
1 Safety \& Recycling 1
1.1 Hazards 1
1.2 Recycling 2
2 Quick Start 3
2.1 Step 1: Connect Batteries 3
2.2 Step 2: Turn On 4
2.3 Step 3: Log In 5
3 Input Devices 7
3.1 Keyboard 8
3.2 OLED Menu 9
3.3 Trackball 11
3.4 Trackpad 12
4 Linux Console Basics 13
4.1 Console and Shell 13
4.2 Root User 14
4.3 Create a New User and Password 14
4.4 Logging In and Out 15
4.5 Sudo 15
4.6 File System 16
4.6.1 Filesystem Hierarchy 17
4.6.2 Home Directory 18
4.6.3 Dot Files 18
4.6.4 Permissions 19
4.6.5 Pipes 20
4.6.6 Links 20
4.6.7 Finding Files 21
4.6.8 Mount Points 21
4.7 Environment Variables 22
4.8 Working with Text Files 23
4.9 Scripts 24
4.10 What Is My Computer Doing? 24
4.11 Inspect Hardware 25
4.12 Clock 26
4.13 Network 26
4.14 Bluetooth 27
4.15 Dual Display 27
4.16 Shutdown 28
4.17 Standby 29
4.18 Installing and Removing Software 29
5 Graphical Desktops 31
5.1 Sway and Wayfire 31
5.1.1 Top Bar 32
5.1.2 Launching Applications 33
5.1.3 Workspaces 33
5.1.4 Display Brightness 33
5.1.5 Network and Wi-Fi 34
5.1.6 Bluetooth 34
5.2 Sway Specifics 35
5.2.1 Tiling 35
5.2.2 Sway Config File 36
5.2.3 Keyboard Layout 36
5.2.4 Trackball/Trackpad Speed 36
5.2.5 External Displays 37
5.3 Wayfire Specifics 38
5.3.1 Wayfire Config File 38
5.3.2 Keyboard Layout 38
5.3.3 Trackball/Trackpad Speed 39
5.4 Alternative Desktops 39
6 Software 41
6.1 Preinstalled Software 41
6.2 Updating Software 44
6.3 Flashing the System Image 44
6.4 Reform Tools 45
6.5 Binary (In)compatibility 46
6.6 Running x86 Software 47
6.7 GPU Hacks 47
7 Hardware 49
7.1 Case Parts 50
7.1.1 Main Box 51
7.1.2 Keyboard Frame 52
7.1.3 Screen Back 53
7.1.4 Screen Front 55
7.1.5 Bottom Plate 56
7.1.6 Port Covers 57
7.2 Motherboard 58
7.2.1 Revised Versions 59
7.2.2 System Controller 60
7.2.3 Flashing the Firmware 62
7.2.4 Expansion Port 64
7.2.5 mPCle Socket 65
7.2.6 M. 2 Socket (Key M) 66
7.3 Processor Module 67
7.3.1 Display Connector 68
7.4 Heatsink 68
7.5 Keyboard 69
7.5.1 Keyboard Firmware 70
7.5.2 Backlight 71
7.5.3 Replacing a Keycap 71
7.5.4 Replacing a Keyswitch 71
7.6 OLED Module 72
7.7 Trackball 73
7.7.1 Trackball Cleaning 74
7.7.2 Trackball Firmware 75
7.8 Trackpad 75
7.8.1 Trackpad Firmware 76
7.9 Exchanging Trackball and Trackpad 77
7.10 Battery Packs 77
7.10.1 Compatible Battery Cells 78
7.11 Compatible Displays 79
8 Advanced Topics 81
8.1 Troubleshooting 81
8.1.1 Boot Issues 81
8.1.2 Serial Console 82
8.1.3 Electronics Repair 83
8.1.4 System Controller 84
8.1.5 Software Issues 85
8.2 System Boot 85
9 Schematics 87
9.1 Motherboard Schematics 87
9.2 Motherboard Bill of Materials 100
9.3 Keyboard Schematics 106
9.4 Keyboard Bill of Materials 110
9.5 OLED Schematics 111
9.6 Trackball Schematics 113
9.7 Trackball Bill of Materials 115
9.8 Trackball Sensor Schematics 115
9.9 Trackball Sensor Bill of Materials 117
9.10 Trackpad Schematics 117
9.11 Trackpad Bill of Materials 119
9.12 Battery Pack Schematics 119
9.13 Battery Pack Bill of Materials 121
9.14 Assembly Parts 121
10 Online Resources 125
11 Credits 127

Preface to the Second Edition

A second edition of the MNT Reform Operator Handbook-so soon? Well, we are astonished, too! The past four years went by so quickly and a lot has changed since we first introduced our MNT Reform laptop, so it's about time to provide a fresh, up-to-date handbook.

At the time of writing, more than 500 people call the MNT Reform their own-amazing! Your support means a lot to us and keeps us going.

Since the initial release of Reform, we have developed several Processor Modules, updated software, firmware and hardware, and made changes based on open source contributions from the MNT community. We have created quite a few Reform products by now, such as the Reform Standalone Keyboard, the Reform Camera and the Pocket Reform. They are all compatible with each other, forming the MNT Reform family.

With MNT Reform, we provide open and sustainable alternatives to today's closed hardware ecosystems. Our devices are meant to be understood and improved by anyone-and community is a vital element in this context. By helping each other and working together we have a chance to create a future where accessible open hardware thrives.

Many of you participate in the MNT Community ${ }^{1}$, actively sharing the progress of your customizations, additions of new features or modifications to your Reform(s). Feel free to drop by-we'd like to see you there!

[^0]
Preface to the First Edition

Early in the MNT Reform project, we made-working in the kitchen-13 prototypes for us and a handful of adventurous people. These were much more primitive predecessors of the laptop that you received today, based on an older processor and an eclectic mix of materials. Each already came with an Operator Handbook: 30 manually bound pages of schematics and instructions for handling the prototype. It was but a rough sketch of the book that you are reading now.

The original handbook turned out to be an icebreaker and conversation aid when talking about MNT Reform with other people. We wrote this new handbook in the same spirit: to make your MNT Reform more approachable, understandable, but also more discussable. The book will be your companion when taking MNT Reform apart and learning the basics of using the machine.

At a time when electronics are becoming ever more secretive, MNT Reform and this book buck the trends-but they are not sacred artifacts. They are meant to be taken apart, discussed, hacked, built upon. Scribble in the margins. Make it your own.

Chapter 1

Safety \& Recycling

1.1 Hazards

Before you get started with your MNT Reform, please read these safety instructions carefully to prevent harm to yourself and your environment.
Electrical Shock and Fire Hazard: Please be extra careful while and after opening the case of the device. MNT Reform uses 8 batteries in series. When fully charged, these combine to a voltage of almost 29 volts, and the battery cells can easily deliver multiple amperes of current. Do not touch the metal pins of the battery holders with metal tools.

Before servicing anything on the inside, make sure that the wall power is unplugged and remove all battery cells.

Damage to Hearing: The headphone output of MNT Reform can be forced to extreme volume which may damage your hearing if you are not careful. Please make sure to set the volume to 30% or less before connecting headphones to MNT Reform, and then adjust the volume to a comfortable level.

1.2 Recycling

Don't throw any MNT Reform parts in the trash! Batteries and electronics contain materials that are harmful to the environment if not properly disposed of.

You can mail any of the parts back to MNT Research, and we will recycle them for you. Alternatively, you can recycle batteries at a local battery collection facility and dispose of electronics and cables at a local e-waste facility.

Chapter 2

Quick Start

2.1 Step 1: Connect Batteries

To prevent discharge during shipment, the battery cables are not connected by default. After reading about Safety in the previous chapter, unscrew the 10 bottom screws and remove the bottom plate. Attach the two battery cable plugs to the battery connectors on the motherboard, then reinstall the bottom lid.

- Bottom Case Screw $\times 10$

2.2 Step 2: Turn On

Circle

Press Circle, then 1 to
turn the power on

First, insert the included SD card into the slot on the left hand side of the device.

Then, to turn Reform on, press Circle and then 1.
The Circle key is used for system control commands. When you press Circle, a menu of system control functions and their shortcuts will be displayed on the OLED screen embedded in the keyboard.

To save power, the status of the Circle key will only be queried once per second, so you need to press Circle for at least one second for the menu to show up.

2.3 Step 3: Log In

After being powered on, the main processor will boot the operating system installed on the inserted SD card. The operating system's kernel will show diagnostic information as it activates all the devices in the system until finally arriving at the login prompt. On first boot, the Setup Wizard will walk you through the configuration process. You'll select your keyboard layout and your time zone, choose a desktop environment, and finally, create a user account. Once everything is set up, you can start installing software and using MNT Reform. If you are new to the Debian GNU/Linux operating system or want to learn about specifics of the system software shipped with MNT Reform, please refer to the chapters "Linux Console Basics", "Graphical Desktops", and "Software".

The following chapter will introduce you to the input devices of MNT Reform.

Chapter 3

Input Devices

MNT Reform comes with a keyboard and either a trackball or a trackpad preinstalled. All of the input devices are modular and can be swapped in and out. They all connect via internal USB 2.0 cables.

3.1 Keyboard

With our newest keyboard ${ }^{1}$, we designed in all necessary concave keycap sizes to achieve a traditional stagger, and a contiguous convex space bar which is easier on the thumbs. It is still split, but you can hit it without even thinking about it. If you're an advanced user, you can also remap two of these space keys. Additionally, we included two homing keycaps to improve navigation while touch typing.

Because many advanced users remap the traditional Caps Lock key to a different function, we swapped Caps Lock for a CTRL key. This makes the use of CTRL key combinations more ergonomic.
Next to the new AGR key-short for "Alternate Graphic", located next to the space bar-is a key with 3 dots (an

[^1]ellipsis). It is intended as a user-defined key, which is mapped to Right CTRL by default. We recommend remapping this key to Compose, a key that allows you to generate Unicode symbols from Compose sequences.

Lastly, MNT Reform features an additional modifier key, the HYPER key, in the lower left. HYPER provides an additional layer of key combinations. Here is the list of shortcuts you can use with HYPER:

Shortcut	Function
HYPER + F1	Decrease Brightness
HYPER+F2	Increase Brightness
HYPER+F7	Previous Track
HYPER+F8	Play
HYPER+F9	Next Track
HYPER+F10	Silent
HYPER+FF11	Volume Down
HYPER +F12	Volume Up
HYPER+↔	Home
HYPER+ +7	End
HYPER $+\uparrow$	Page Up
HYPER+ \downarrow	Page Down

3.2 OLED Menu

Selected Function
\mid

The keyboard has a built-in OLED display for interaction with the System Controller on the motherboard. You can highlight an option and scroll through the menu by using the \uparrow and \downarrow keys. To trigger the highlighted option, press ENTER. Alternatively, you can press the shortcut key that is displayed on the right hand side of each menu option. For example, to show the Battery Status, press B when the menu is active. To leave the menu, press ESC.

You can see detailed battery information including the estimated total charge percentage on the Battery Status screen reachable through the OLED menu. Each cell icon corresponds to one of the eight battery cells. The leftmost group of four icons represents the battery pack on the left side of the device, and the group on the right represents the battery pack on the right-assuming you look at MNT Reform when flipped on its back and the batteries closest to you.

For the left pack, the top battery icon represents the leftmost cell in the pack, and the bottom icon represents the rightmost cell. For the right pack, it is the other way around, because the pack is rotated by 180 degrees in the laptop.

The illustration shows which icon and voltage on the OLED display corresponds to which battery cell in the device. ${ }^{2}$

3.3 Trackball

The trackball works like a mouse with three buttons (left,

[^2]middle, and right click). Roll the ball to move the cursor. In addition to the standard mouse buttons, the trackball also has two Scroll Mode buttons. Holding down either while moving the ball will scroll the currently focused content.
Pressing both Scroll Mode buttons together will turn on Sticky Scroll Mode, so that you can scroll through a longer text without needing to hold down a button.

3.4 Trackpad

Unlike the trackball, the trackpad doesn't have any buttons. Slide one finger across the surface to move the cursor.
Tapping with one finger acts like a left mouse button click. Slide two fingers across the surface to scroll in any direction. Tapping with two fingers performs a right click. To click and drag, use three fingers. Tapping with three fingers is equivalent to a middle click.

Chapter 4

Linux Console Basics

4.1 Console and Shell

MNT Reform ships with a lightly customized Debian GNU/Linux distribution on the provided SD card. With the SD card inserted, MNT Reform will boot to a login screen.

From here, you can reach a graphical desktop or the Linux console. If something goes wrong, you can always go back to the console and fix things-if you know a few basics of Linux administration. To reach the console from the login screen, you can use the key combination $A L T+F 1$, or $A L T+F 2$ to go to the second console, etc.

After logging in on the console, you are in control of a shell. The default shell is called bash ${ }^{1}$, but there are many other shells available. You can use the shell to type in commands for your computer to execute, but also to write programs (scripts) that combine commands to do more complex tasks. For example, this handbook is generated by a bash script combining a few text and graphics related tools.

This chapter will introduce you to the basics of exploring and

[^3]administering your MNT Reform system using the shell first and then a graphical desktop. You can also launch shells on the desktop to use tools that don't have a graphical user interface. Using these tools, you can troubleshoot some problems with the operating system by yourself.

4.2 Root User

The most powerful user in the system is root. When logged in as root, you can modify but also destroy any file in the system. To prevent others from logging in as root, you should protect the account with a password (the Setup Wizard asks you to do this). In the shell, you execute all commands by typing them in and pressing ENTER. To set your password, execute this command:

passwd

The passwd command will ask you for a new password two times, but will not display it while typing (so it cannot be gleaned by onlookers).

During normal Linux usage you will rarely want to be rootonly when performing changes to the system configuration, which includes adding or removing users or software and controlling background services. Instead, you should create a less privileged user account for yourself.

4.3 Create a New User and Password

You have created a user in the Setup Wizard after powering on your MNT Reform for the first time. In order to add another user account to the system, log in as root and execute the adduser command:
adduser kim
This will create a new user named kim, and add a new home directory for kim at /home/kim. The adduser command will ask
you for a password and a few questions that you can skip by just pressing ENTER.

If you want to change the password for the user kim later, you can use the passwd command as before:
passwd kim

4.4 Logging In and Out

You can log out of the console or a terminal window by pressing CTRL+D. Alternatively, you can type exit in the terminal.

When logged out, you will see the login prompt. Type the username that you added in the previous step and press ENTER. Next, type your password (it is not displayed). Press ENTER to complete the login.

4.5 Sudo

To make bigger changes to the system you will often need to use a command that requires root (superuser) privileges. Logging out of your user account just to log back in as root is inconvenient. Instead, you can temporarily become root by either switching to it as su (switch user) or give your regular user account sudo privileges ${ }^{2}$.

Sudo allows you to use a command as root by typing sudo command-but only if you are a member of the sudo group. To add your user to the sudo group, first log out and login as root. Then you can execute the following command:

```
usermod -a -G sudo kim
```

(Substitute your username for kim here).

[^4]The -a flag means "Append the user to the group", while the -G option specifies the name of the group you want to add the user to: sudo.

Log out and login as your regular user again. From now on, you can execute commands which require root privileges using sudo. For example, to shut down your computer safely before turning it off, you can type:
sudo shutdown now

4.6 File System

Your system's file storage is organized in a tree of directories.
To move around in it, you use the cd command to change the current directory. The top of the hierarchy is called root (not to be confused with the superuser of the same name), but written as the symbol /. To go to the root directory, enter:
cd /
To see what's here, use the ls (list) command:

ls

If you want to know more details, such as the modification times and permissions of files, use:
ls -l
You can also add the flag -h to get "human readable" file sizes instead of the raw number of bytes:

```
ls -lh
```

There are two virtual files in every directory, called ".." (two dots) and "." (one dot). The single "." means "here" (i.e. the current directory), and you can use it if you ever want to specify the current directory explicitly. For example, if you want to copy the file /tmp/myfile to the current directory, you can type:
cp /tmp/myfile .

To go to the parent directory (a top-level directory that contains subdirectories, the so-called "children"), use:
cd ..
Commands like ls have many options. To learn about them, you can read the built-in manual pages:

```
man ls
```

With man you can learn more about any command. You should make yourself familiar with the most important commands like cp (copy), mv (move), rm (remove), mkdir (make directory), mount and ln (link). Armed with this knowledge, you will be able to navigate any UNIX-like system, not only Linux.

4.6.1 Filesystem Hierarchy

When you issue ls at the root of the filesystem (/), you will see the following directories:

Directory	Purpose
/	Top ("root") of the filesystem
/bin	Commands ("binaries"), such as ls, cp
/sbin	Commands usually only used by root
/lib	Libraries (common code shared between binaries)
/usr	Files managed only by the package manager
/boot	Boot loader related files (like Linux kernel3)
/etc	System configuration files
/home	Home directories of user accounts
/root	Special home directory for root
/mnt	A place to mount other filesystems
/media	Another place to mount filesystems
/proc	Live information about processes
/sys	More live information from the kernel
/dev	Device files providing access to hardware
/run	Temporary files related to background services
/tmp	Temporary files-deleted on restarts

[^5]Directory Purpose
/srv Files used by servers such as web servers

A good way to explore files and directories that take up disk space is using the ncdu program. It calculates the size of each (sub)directory and allows you to browse your filesystem and even delete unwanted files (you should only do this in your home directory, though):
ncdu /

4.6.2 Home Directory

If your username is kim, your home directory is located at /home/kim. There's a shortcut for your home directory using the tilde symbol \sim. To go to your home directory, you can type:
cd ~
If you list the contents of your home directory, you will see a number of directories with self-explanatory names, such as Pictures, Music, Documents and Downloads. The last one is used by web browsers to store downloaded files, for example. Feel free to create your own subdirectories in your home directory as needed.

4.6.3 Dot Files

Your home directory also contains a number of hidden files and directories called "dot files". Their names start with a dot (.) and for tidiness, are usually hidden. To see them, use the -a flag with 1s:
ls -a
Often times, dot files contain your personal configuration for certain programs. Many programs collect configuration files in the $\sim /$.config subdirectory.

4.6.4 Permissions

As you are the owner of your home directory, your user account is allowed to modify any files and subdirectories contained in it. But you cannot change system configuration files in /etc or delete a command in /bin, except if you're root. This is because of the ownership and permission settings on these files and directories.

If you list the contents of your home directory with ls -1 , you will see your username twice in each row, after a crypticlooking column of letters and dashes and a number:

```
drwxr-xr-x 4 kim kim 4096 Nov 2 20:52 Music
rw-r--r-- 1 kim kim 8 Jan 9 20:03 notes.txt
```

The letters and dashes at the beginning describe the file mode bits of the file or directory. A " d " at the beginning signifies a directory. The following 9 letters are three triplets describing "user" (owner), "group", and "all" permissions, in that order. "r" means read, "w" write and "x" execute. An " x " on a file means that this is an "executable", a program that can be run, or in the case of a directory, that it can be entered.

The first occurrence of a username in each row is the owner of the file or directory. The first triplet of mode bits on notes.txt tells you that you, the owner, can read and write but not execute this file (after all, it is just a text file).

The second occurrence of kim names the group kim, not the user. When you create a new user, the system also creates a group with the same name and only you as a member. You could add other users to your group to share files with them, for example. The second triplet of mode bits, r--, tells you that members of this group can only read your file, not change it.

Lastly, the third mode triplet (r-- in this example) says that any other user logged into your system can read this file.
To change the mode bits of a file, you can use chmod. For example, to give nobody but yourself (assuming you're the
owner) the permission to read and write the file notes.txt, execute:
chmod $a=, u=r w$ notes.txt
This invocation first sets an empty list of modes for all users ($\mathrm{a}=$) and then read and write modes for the user/owner ($\mathrm{u}=\mathrm{rw}$) on the file.

To learn more about managing modes and ownership, be sure to read the man pages for chmod, chown, and chgrp.

4.6.5 Pipes

Linux features some advanced concepts that are central to the UNIX philosophy (Linux is a flavor of UNIX). One that you will often encounter is the pipe, symbolized by I. You can use pipes to feed the output of one program to the input of another program. For example, you can use the pager less to paginate a long stream of text, such as the output of dmesg. This tool prints all diagnostic messages of the operating system kernel, and using less lets you view it page-by-page instead of having to scroll back to the beginning:
dmesg | less
Or page through a long list of files:

```
ls -la ~/Downloads | less
```

You can also build more complex pipelines. The following command will output the last 5 lines containing the word "usb" in the kernel log:
dmesg | grep usb | tail -n 5

4.6.6 Links

If you list the contents of /usr/lib with ls -l you will see a number of files that point to another file with an arrow ($->$).
This is because the file on the left hand side is a "symbolic link" to the "real" file on the right hand side. Symbolic links
and "hard links" can be created using the ln command as a means to point to a file using another name. This can be useful to create shortcuts. Refer to the manual page with man ln to learn about the details of links.

4.6.7 Finding Files

If you don't remember where you put a file, or want to search a complex hierarchy of directories for something specific, you can use find:
find -name "notes*"
This will display any file or subdirectory whose name starts with "notes" in the current directory. man find will reveal many more options for finding files.
The rgrep command will look for words in the content of a file:
rgrep --color spice
This will look for any occurrence of the word "spice" in files in the current directory and its subdirectories, and display each line in which the word was found, with the word itself highlighted.

4.6.8 Mount Points

The root directory / is actually a collection of filesystems "mounted" into one virtual filesystem. These can be located on different disks, media or even the network-or be purely virtual in the case of /dev, /proc or /sys.

For example, if you want to access files stored on a USB stick, you would first mount one of the filesystems contained on the USB stick into an empty directory called a mount point. This could be something like /mnt or /media/usb-stick. Usually, desktop environments can help you to automatically mount removable media, but it's useful to know how to do the same process manually.

First, you need to find the block device of the media you want to mount. For this, you can use the command lsblk. An example (partial) lsblk output could be:

| NAME | MAJ:MIN | RM | SIZE | RO | TYPE |
| :--- | :---: | ---: | ---: | ---: | ---: | MOUNTPOINT

Here, sda1 is the block device of the first partition on the USB stick. If you are unsure which is the right device, you can issue dmesg -w and then plug in the USB stick. You'll see something like this appear in the kernel log:
[...] sd 0:0:0:0: [sda] Attached SCSI removable disk
Which tells you that sda (or in your case, something else) is the block device you're looking for.

To mount the partition on the USB stick at /mnt, do:
sudo mount /dev/sda1 /mnt
If successful, this will-in UNIX tradition-output nothing, and you can find your files by navigating to /mnt with the usual commands.

Before unplugging your USB stick, you should unmount it. This makes sure any pending changes are written to the device (note that the command is umount, not "unmount"):
sudo umount /mnt

4.7 Environment Variables

As the shell is not only a command interpreter but also a programming environment, it supports variables. These are placeholder names that contain a value that can be changed at any time. For example, you could make a universal greeting command like this:
echo Hello, \$name.

The output of this command changes depending on the value of the variable \$name. To change the variable:
name=World
If you now execute the same echo line as before, you'll see this output:

Hello, World.
Variables are often used to define an environment for other programs. This means that a program can change its behavior according to these variables. These so called environment variables are set before starting the program. To see all currently defined environment variables, you can use the env command. You will see a few specific ones among the output:

HOME=/home/kim
PWD=/home
SHELL=/bin/bash
USER=kim
This means that another way to reach your home directory is cd \$HOME, and another way to refer to your username is \$USER. A critically important variable is \$PATH, which is a list of directories (separated by ":") that the shell searches when looking for a command that you want it to execute. For example, when you type ls, your shell will only find it if /bin is in your \$PATH, because ls actually resides at /usr/bin/ls.

4.8 Working with Text Files

Most system configuration is done by editing text files.
The two most common text editors in Linux are vim and emacs, which both have a steep (but rewarding) learning curve. Thus, Reform system provides an editor more suited for beginners called micro.

You can create, view, and edit files using the micro text editor. To edit a file in the current directory named file.txt, use:

```
micro file.txt
```

While in micro, you can use $C T R L+S$ to save, $C T R L+Q$ to quit, and CTRL+G to display a help menu.

4.9 Scripts

By now you know most of the ingredients to be able to write shell scripts: programs interpreted by the shell. By writing shell scripts, you can create your own commands to extend the capabilities of your computer. Here is an example script that greets the user:
\#!/bin/bash
day $=\$($ date $+\%$ A)
echo Hello, \$USER. Today is \$day.
The first line of the script, called the "shebang" line is important to tell the operating system that this script is to be interpreted by the shell /bin/sh. Save the script to a file named greet.sh. Mark the file executable and execute it:

```
chmod a+x ./greet.sh
```

./greet.sh
You can learn more about programming the shell by reading its manual page man sh. The more advanced bash shell is documented in man bash.

4.10 What Is My Computer Doing?

You can check your RAM usage, CPU usage, and processes currently running by using htop:
htop
Hit F1 to display the built-in help screen.
You will see that there are a few processes running that you didn't start yourself. These are background processes, also
called services, daemons, or units. They are controlled by systemd, the so-called "init system". It is the first program started by the Linux kernel, and it spawns all other programs including services. You can learn more about systemd by reading the manual page:
man systemd
The most important commands to manage systemd are systemctl and journalctl. Their manual pages are worth a look, too. To see the list of known units and their status, you can use:
systemctl
To inspect a unit in more detail, you can pass its name to systemctl. For example:
systemctl status ssh
Instead of status, you can use verbs like start, stop or restart to control units.

The Linux kernel itself outputs a lot of diagnostic information at boot and when hardware changes (e.g. new devices are plugged in). To see the kernel log, you can (as superuser) use:
sudo dmesg -H

4.11 Inspect Hardware

The following commands are useful to inspect devices connected internally or externally:

Command	Description
lsblk	List block devices (storage).
lsusb	List USB devices.
lspci	List devices connected to PCle ports.
lscpu	Get information about the processors.
free -h	Get information about system memory.

4.12 Clock

To see the current date and time, you can use the date command. The date and time are set by the ntp ("Network Time Protocol") service by synchronizing to time servers on the internet.

The motherboard of MNT Reform has a battery-backed realtime clock chip (PCF8523T, U5). This chip saves the date and time even if your system is shut down or loses power. You can interact (as root) with the clock using the hwclock tool. Review man hwclock for the details.

4.13 Network

MNT Reform has a built-in Gigabit Ethernet (1 GbE) port for networking. Additionally, you can install a Wi-Fi card in the mPCle slot (depending on your Processor Module), or the module itself comes with a Wi-Fi chip.
Usually, you want to use a convenient management tool like network-manager (preinstalled) and the tool nmtui to manage your network connections.
To see and change details of your network connections, you can use the ip tool:
Command Meaning
ip addr Show the status of the network interfaces ${ }^{4}$. ip route Show the network routing table.

You can trigger an automatic configuration of an interface via DHCP by executing dhclient etho, and you can change the DNS servers by editing the file /etc/resolv.conf.
To connect to a remote computer via a secure shell connection, try ssh followed by the IP address of the computer you

[^6]want to connect to. If you want to login to MNT Reform over the network, you can enable the secure shell daemon service as follows:
sudo systemctl enable sshd
You can then login to MNT Reform from another computer on your local network by executing:
ssh kim@192.168.1.242
Replace the username kimwith your own username and the IP address 192.168.1.242 with your own IP address. You can find your IP address by looking for the inet entries in the output of the ip addr command.

Before using SSH functionality, you should generate a public/private key pair by executing ssh-keygen.

4.14 Bluetooth

Some Processor Modules, such as the RCM4 with A311D, feature integrated Bluetooth. This technology lets you connect to wireless devices that are close to your MNT Reform (usually a few meters), such as headsets, speakers or mobile phones. If you ever need to troubleshoot Bluetooth, you can try restarting its service using systemctl restart bluetooth or interact with blueman on the command line using bluetoothctl.

4.15 Dual Display

MNT Reform has an HDMI connector that has different functions depending on the installed Processor Module:

Module	Dual Display
i.MX8MQ	Yes
i.MX8MPlus	Yes

Module	Dual Display
LS1028A	No
RCM4 for Raspberry Pi	Yes
RCM4 with A311D	No
RK3588	Yes

To activate dual display with i.MX8MQ, for example, run the following command:

```
reform-display-config --dual
```

Other modules that support dual display will activate this function automatically.

4.16 Shutdown

To turn off MNT Reform, you should shut down the system cleanly by executing:

```
systemctl poweroff
```

or
sudo shutdown -h now
On the graphical desktop, you can click the reform-tray icon and select shutdown.

In the Debian system shipped with MNT Reform, the shutdown process will ask the System Controller to turn off the power. The OLED display will then show an animation of a disappearing MNT Research logo. In case you have to turn off the power manually (for example if the system is unresponsive or you are using an alternative OS), press Circle and then 0 (zero).

4.17 Standby

The standby function works with only some of our Processor Modules.

LS1028A doesn't support standby, and at the time of writing, it is still in development for A311D. The i.MX8MQ system-onchip, on the other hand, can enter a low power standby mode. This function is stable for this module, but always save your work to disk regardless. In our tests, the power consumption in standby mode is roughly halved compared to the normal working mode.

To enter standby mode, execute the provided reform-standby script:

```
reform-standby
```

You can also use the reform-tray icon and select standby mode.

To make the system wake up from standby, select the Wake item from the keyboard OLED menu.

4.18 Installing and Removing Software

The Debian GNU/Linux distribution has access to a large number of software packages. No matter which desktop you use, these are centrally managed by apt, the package manager. Generally, on a Linux system you rarely download executables from the internet and launch them. Instead, you can cleanly install and remove software packages by using the package manager. apt also has the ability to search for keywords (or regular expression patterns):
apt search browser
This will list all packages in the apt cache that contain the keyword "browser". To refresh apt's list of packages available in the online Debian repository (the library of packages), use the following command:
sudo apt update
If you have found a package you would like to install:
sudo apt install firefox
To remove (uninstall) the package from your system:
sudo apt remove firefox
To explore all of apt's functionality, read the man pages for apt and apt-cache. If you are more comfortable with a graphical user interface for managing apt packages, you can use the command reform-synaptic.

Chapter 5

Graphical Desktops

5.1 Sway and Wayfire

MNT Reform ships with two graphical environments called "desktops". The Debian distribution, which the system on the SD card is based on, has a number of additional desktops in its package manager (see section "Alternative Desktops" at the end of this chapter).

1. Sway emphasizes the concept of "tiling". This means that normally, windows don't overlap, but instead the screen space is automatically divided to make space for new windows. This desktop consumes minimal system resources, but relies heavily on keyboard shortcuts, which makes it harder to learn.
2. Wayfire features classic overlapping windows, a point-and-click driven interface, and a modern look. In Wayfire, you can drag windows to the corners or edges of the screen and they will be snapped. They also have minimize, maximize, and close buttons. If you're accustomed to GNOME, Windows, or macOS desktops, you'll find Wayfire quite intuitive.

You initially choose between Sway and Wayfire in the MNT Reform Setup Wizard. This choice will be reflected as the default on the login screen, but you can change it by pressing F3.

Sway and Wayfire look and work differently, but they share the following functionalities and keyboard shortcuts with SUPER ${ }^{1}$:

Key Combinations	Function
SUPER+ENTER	Open a terminal
SUPER+ESC	Close active window
SUPER+D	Find and launch programs
SUPER +SHIFT+S	Take screenshot (in $\sim /$ Pictures)
SUPER +SHIFT+X	Take screenshot of an area
SUPER+1...	Go to workspace 1-9
SUPER + SHIFT+1...	Move active window to workspace 1-9

5.1.1 Top Bar

Both desktops come with an information bar at the top of the screen provided by the waybar package. The bar is divided into the following sections:

Section	Action on click
MNT Research logo	Open the launcher
Icons of running applications	Switch to application
Workspace numbers (only on	Switch to workspace
Sway)	Settings for network, Tray icons volume, etc.
Clock	Toggle date/clock

[^7]You can completely customize the top bar by editing the config file ~/.config/waybar/config and the CSS-based styling file ~/.config/waybar/style.css.
man waybar explains the available configuration options.

5.1.2 Launching Applications

Reform's Sway and Wayfire desktops include the wofi launcher, a popup menu for launching an application by typing a part of its name. Click on the MNT logo in the Top Bar or press SUPER+D to open the menu. Over time, wof i will remember the applications you regularly launch and will sort them by frequency of use.

5.1.3 Workspaces

If you have a lot of windows open, they might not all fit on the screen at once. For this purpose, multiple set of windows can be arranged in workspaces.

You can change your active workspace with the number keys, for example:

Shortcut	Function
SUPER+2	Go to workspace 2
SUPER+1	Go back to workspace 1
SUPER+SHIFT+5	Move active window to workspace 5

You can open different spaces for different programs. For example, you might want to put your code-editing programs in workspace 1, a web browser in workspace 2, and some instant messaging programs in workspace 3.

5.1.4 Display Brightness

You can set the display's brightness using the brightnessctl command or, more conveniently, use one of these keyboard
shortcuts:

Shortcut	Function
HYPER+F1	Decrease display brightness
HYPER+F2	Increase display brightness

5.1.5 Network and Wi-Fi

You can connect to Wi-Fi networks and configure Ethernet as well as VPN connections by clicking the network icon in the top bar.

5.1.6 Bluetooth

If your system has Bluetooth, you'll see a Bluetooth icon in the tray area of the top bar. This icon is powered by the blueman package behind the scenes and clicking on it with the left mouse button will open the Bluetooth Devices window, where you can search for nearby devices to connect to. Right clicking on a Bluetooth device will give you the options to connect, pair, or get more information. You can also rightclick on the Bluetooth icon in the top bar itself to open a context menu with more options, like toggling the Bluetooth visibility of your MNT Reform, sending files or reestablishing recent connections.

Note that any Bluetooth audio devices, when connected, will appear in Volume Control (started by launching it from the speaker icon in the top bar or manually from the launcher). Here you can choose them as the default output or input device and adjust the volume.

5.2 Sway Specifics

5.2.1 Tiling

You can start a new terminal window by using the shortcut SUPER + ENTER. When you press SUPER+ENTER multiple times to open several terminals, you'll notice that your currently open windows will be resized to accommodate for the new window. You can switch between these windows by holding the SUPER key and pressing the cursor (arrow) keys in the desired direction.

If you keep adding windows, they will continuously shrink horizontally, but if you would rather have a window split vertically, you can. Use these shortcuts for deciding:

Shortcut	Function
SUPER $+H$	Split window horizontally
SUPER $+V$	Split window vertically

Note that the window is not split instantaneously. You're just telling Sway "The next time I create a window, put it below/beside my current window."

You may also use SUPER+W to tell Sway to use tabs. You can switch your tab using the same shortcuts for switching between windows. You can end this function by pressing SUPER+E.

You can use SUPER+ESC to close the currently selected window.

5.2.2 Sway Config File

You can tailor Sway's behavior and keyboard shortcuts by editing the file $\sim / . c o n f i g / s w a y / c o n f i g$ or one of the included files in the $\sim / . c o n f i g / s w a y / c o n f i g . d$ directory.

All configuration options are documented in the manual page that you can access by typing man 5 sway in a terminal. More information is also available in the Sway Wiki: https: //github.com/swaywm/sway/wiki

Some of the most important configuration options are explained in the following sections.

5.2.3 Keyboard Layout

The keyboard layout is normally configured by the MNT Reform Setup Wizard. Should you want to configure it manually, you can edit the $\sim /$. config/sway/config.d/input file. For example, the following snippet will change the layout to the EU layout for any connected keyboard:

```
input * {
    xkb_layout eu
    xkb_options lv3:ralt_switch
}
```


5.2.4 Trackball/Trackpad Speed

A common thing that people want to tune to their particular taste is the speed of the trackball (or trackpad) on MNT Reform. For Sway, you could add an input section (or extend
the existing one) to the $\sim /$. config/sway/config.d/input file as such:

```
input * {
    accel_profile adaptive
    pointer_accel 1.0
}
```

Where pointer_accel can be a number between -1.0 and 1.0.
You can find out about all of the details of Sway's input configuration by opening its manual page using man sway-input.

5.2.5 External Displays

Some Processor Modules allow you to connect an external display on the HDMI port, but not all of them can drive both the internal and the external display at the same time. If your module supports dual display, plugging in an external monitor should just work. If you want to configure the placement and resolution of this monitor, take a look at man sway-output and create an output HDMI-A-1 section in your Sway config file. Other helpful tools that you can install for these purposes are kanshi and wlr-randr.

You can also use swaymsg to control your displays on the fly or when pressing certain key combinations. The following example script will switch from internal to external display and force a standard 1080p mode:

```
#!/bin/sh
swaymsg output eDP-1 disable
swaymsg output HDMI-A-1 enable
swaymsg output HDMI-A-1 modeline 148.50 1920 2448 2492\
264010801084 1089\
1125 +hsync +vsync
```


5.3 Wayfire Specifics

Wayfire supports a range of keyboard shortcuts to speed up working with the desktop:

Shortcut	Function
SUPER $+\leftarrow$ or \rightarrow	Tile window to left or right
SUPER \uparrow or \downarrow	(Un)maximize window
SUPER $+T A B$	Overview of all windows
$A L T+T A B$	Cycle through windows

5.3.1 Wayfire Config File

You can customize Wayfire in depth by editing the file:
~/.config/wayfire.ini
Some common configuration options are explained in the following sections.

5.3.2 Keyboard Layout

Wayfire's keyboard layout is normally configured by the MNT Reform Setup Wizard. Should you want to configure it
manually, you can edit the file ~/.config/wayfire.ini. Look for the line xkb_layout in the section [input]. For example, to change it to the "EurKEY" layout, change the value after the = sign to eu.

5.3.3 Trackball/Trackpad Speed

To change the speed of the trackball (or trackpad) cursor under Wayfire, look for the lines in the [input] section of
 high acceleration speed, set the touchpad_accel_profile to adaptive and adjust the touchpad_cursor_speed value to 1.0 (it can be a number between -1.0 and 1.0).

You can learn all the details of Wayfire's configuration in its wiki: https://github.com/WayfireWM/wayfire/wiki

5.4 Alternative Desktops

On MNT Reform, you are not restricted to Sway or Wayfireyou can also use other desktops.
You can choose an established desktop such as KDE Plasma and GNOME, or you can go down the rabbit hole of arcane desktops and discover a hidden gem this way.
We don't ship either of the big desktops as they require a lot of resources and we want to keep our system minimalistic, but here is how you can install them yourself:

GNOME Command: sudo apt install gnome
KDE Plasma Command: sudo apt install kde-plasma-desktop

Chapter 6

Software

In the first edition of the handbook, we listed a number of free open source applications that had been tested and pre-installed on MNT Reform. While this was intended to add to the user experience, it also contributed to the system becoming a bit cluttered. Nowadays, we ship the system in a more minimalist form and give you the freedom to decide what to install. We still wanted the computer to be practical out of the box, so we included some essential tools that are listed in the following section. We also included a section about the so-called "Reform Tools", which are Reform laptop specific helpers and scripts.

MNT Reform can run most Linux applications that are available for 64bit ARM-based computers (also called AArch64 or ARM64).

6.1 Preinstalled Software

Evince View PDFs and other documents.
Command: evince
https://wiki.gnome.org/Apps/Evince

Firefox Mozilla's open-source web browser.
Command: firefox
https://www.mozilla.org/firefox
foot A terminal emulator that is fast, minimalistic and lightweight.

Command: foot
Keyboard shortcut: SUPER+ENTER
https://codeberg.org/dnkl/foot
GNOME Disks Partition, format, and manage internal and external disks.

Command: gnome-disks
https://wiki.gnome.org/Apps/Disks
Grim \& Slurp Grim is a wayland-based screenshot tool, and Slurp lets you select the region of the screen you want to capture.

Command: grim -g "\$(slurp)"
Keyboard shortcut: SUPER+SHIFT+X
https://wayland.emersion.fr/grim
htop A terminal-based look at system processes, CPU and memory usage.

Command: htop
https://htop.dev
micro An accessible, fresh terminal-based text editor.
Command: micro
https://micro-editor.github.io/
Minetest An 3D block-based open-world game focused on exploration, resource gathering, and construction.

Command: minetest
https://minetest.net
MPV A versatile, terminal-based media player.
Command: mpv a-movie-file.mp4
https://mpv.io
NCurses Disk Usage Terminal-based disk usage analysis utility.

Command: ncdu
https://dev.yorhel.nl/ncdu
Neverball This 3D game lets you guide a ball through 24 challenging levels.

Command: neverball
https://neverball.org
Sxiv A simple and fast image viewer.
Command: sxiv
https://github.com/muennich/sxiv/
Thunar Lightweight file manager.
Command: thunar
Keyboard shortcut: SUPER $+T$
https://docs.xfce.org/xfce/thunar/start
Vim The other major open text editor.
Command: vim (Exit by typing :q followed by ENTER)
https://www.vim.org
Wayland Event Viewer Useful when debugging input devices under wayland-based compositors such as Sway.

Command: wev
https://git.sr.ht/~sircmpwn/wev

Wayvnc Access your MNT Reform desktop remotely from VNC clients on other platforms using this server application.

Command: wayvnc
https://github.com/any1/wayvnc
wf-recorder Record MP4 video of your desktop with this program.

Command: wf-recorder (Stop with CTRL+C. The resulting video is named "recording.mp4")
https://github.com/ammen99/wf-recorder

6.2 Updating Software

We recommend updating your software on a regular basis as bugs get fixed, new features are introduced and improvements are made. For this purpose, Debian has an integrated package manager called apt. You can stay up to date by executing the following command: sudo apt update. This will show you how many packages can be updated. You can either update individual packages or everything at once with one command: sudo apt upgrade.

6.3 Flashing the System Image

If your SD card is broken or you want to set up a new system (for example when upgrading to a new Processor Module), you can download the "System Image" from: https://mnt.re/ system-image

First of all, back up all your important data! The following process will erase everything that is on the SD card you decide to flash.

From the link above, download the file whose name matches the Processor Module in your MNT Reform:

Processor Module	Filename
NXP i.MX8MQ	reform-system-imx8mq.img.gz
NXP i.MX8MPlus	reform-system-imx8mp.img.gz
NXP LS1028A	reform-system-ls1028a.img.gz
RCM4 with BPi CM4/A311D	reform-system-a311d.img.gz
Rockchip RK3588	reform-system-rk3588.img.gz

Unzip the image using gunzip (substitute your actual image file name, also in the following steps):
gunzip reform-system-imx8mq.img.gz
Identify the device name of your SD card. For example, you can check the output of lisblk before and after you insert the card and compare which new device appears. Below we use the device sdX, but it will be a different one on your computer.

Copy the image to your SD card (Warning: all data on the SD card will be erased!):

```
sudo dd if=reform-system-imx8mq.img of=/dev/sdX \
    bs=8M status=progress
```

That's it-now you can boot your Reform from the freshly flashed SD card.

As new modules become available, you can refer to our online guide: https://source.mnt.re/reform/reform-system-image\# downloading-and-flashing-a-system-image

6.4 Reform Tools

We have our own Debian package called reform-tools. These tools are designed to automate otherwise tedious system configuration tasks, so we encourage you to check them out.

Command	Function
reform-check	Tries to analyze what's wrong with your OS.
reform-display-config	This tool configures single and dual display mode. Only supported with i.MX8MQ.
reform-flash-uboot	This updates the bootloader (rarely needed).
reform-help	Shows you a list of useful commands.
reform-migrate	Helps you with OS migration from SD card to NVME or eMMC flash.

More information about reform-tools: https://source.mnt. re/reform/reform-tools

6.5 Binary (In)compatibility

A popular architecture for computers is x86-64 (a.k.a. AMD64). Binaries compiled for this architecture are incompatible with ARM processors. If you want to use binary software, you have to make sure that it is built for AArch64. The vast majority of open-source software is available for AArch64, but there can be subtle problems when $x 86$ is implicitly expected, for example:

- Optimizations written in assembler (machine code), targeting specific SIMD/vector instructions
- JIT (just-in-time) compilers

Generally, instead of using inline assembler or targeting a single architecture directly, use cross-platform libraries and code-emitting backends.

6.6 Running x86 Software

Until RISC architecture will change everything, many games and proprietary closed-source applications are only available as x86 or x86-64 binaries. If you need to run such a binary, you can try binary translators such as box64 (available in apt) or DEX:
box64 ./my-game
You can even run some Microsoft Windows applications on MNT Reform by chaining box64 and wine, which is a Linux compatibility layer for Windows binaries:
box64 wine64 ./my-game
Emulating 32-bit x86 binaries is a bit more complicated, but possible on a 64-bit ARM platform. You can leverage Debian's "multiarch" feature to add the armhf architecture to your system and install box86 (box64's 32-bit sibling) this way. For troubleshooting such setups, don't hesitate to get in touch with the MNT Community.

6.7 GPU Hacks

At the time of writing, most MNT Reform Processor Modules are based on ARM System-on-Chips that contain a GPU meant for mobile or "embedded" use. Multiple factors define the limits of the versions of OpenGL, OpenGL ES and Vulkan APIs that software can use on MNT Reform: for example, the space- or energy-saving architecture of these GPUs, or the capabilities of the often reverse-engineered open-source drivers such as etnaviv or panfrost.

Sometimes, graphics heavy applications or 3D games are written with large and power hungry desktop GPUs in mind and require a GL or Vulkan version that is out of reach of your device. In some cases the developers do not really require the features available for higher OpenGL versions, though, and you can try to work around the limitation by pretending
that your system supports a higher version than it really does. To do this, you can set the following environment variables in a terminal and then launch your application or game from this same terminal:
export MESA_GL_VERSION_OVERRIDE=4.2
export MESA_GLSL_VERSION_OVERRIDE=420
my-game
If this fails, you can always fall back to software emulation of OpenGL, which will be slow but sometimes usable:
export LIBGL_ALWAYS_SOFTWARE=1
my-game
Mesa is the collection of Linux 3D graphics drivers. You can learn more about various Mesa environment variables at https://docs.mesa3d.org/envvars

Chapter 7

Hardware

7.1 Case Parts

The case consists of the following 5 parts. All parts except the Bottom Plate are milled from sand-blasted and anodized 6061 aluminum.

1. Main Box: the chassis of MNT Reform. All PCBs (printed circuit boards) are attached to it via screws: The keyboard from the top and motherboard, trackball/trackpad, and battery boards from the bottom. The lower half of the hinges and the system controller OLED PCB are mounted from the top as well.
2. Keyboard Frame: a thin rectangle that covers the sides of the keyboard and the system controller OLED
3. Screen Back: houses the display and upper half of hinges
4. Screen Front: houses speakers and providing display bezel
5. Bottom Plate: the clear acrylic plate that closes the laptop from the bottom

For easy (dis)assembly, Reform uses M2 screws with Phillipshead everywhere-with one exception: $M 4 \times 5$ on the top half of the hinges.

7.1.1 Main Box

The Main Box houses most of the electronics:

- Motherboard, exposing ports through openings on the left and right
- Two LiFePO4 battery packs, connecting to the motherboard via Molex PicoLock cables
- Keyboard, connecting to the motherboard via two JST-PH cables
- OLED display, connecting to the keyboard via a 4-pin 1mm pitch flex cable
- Trackball or Trackpad, connecting to the motherboard via one JST-PH cable

The Main Box features four neodymium bar magnets inserted into slots below the front edge. These match with their counterparts in the Screen Front.

7.1.2 Keyboard Frame

The Keyboard Frame is inserted into the Main Box. It has four tabs on the front that must be inserted first. The frame is mounted with six black $\mathrm{M} 2 \times 5$ countersunk screws.

7.1.3 Screen Back

The eDP display panel rests in the Screen Back. The left and right hinges are mounted in the bottom left and right corners with three $M 4 \times 5$ countersunk screws each. Note that the hinge labeled "SMS-ZZ-219-L" goes on the right side, and the hinge labeled "SMS-ZZ-219-R" goes on the left side. The other half of each hinge is mounted to the Main Box with four $\mathrm{M} 2 \times 6$ countersunk screws.

Four neodymium magnets are mounted along the top edge of the Screen Back. These, together with their counterparts in the Main Box, hold the laptop shut when closed.

The stereo speakers are mounted below the display and secured with the speaker holders. Each holder is mounted with two black $\mathrm{M} 2 \times 5$ countersunk screws. Both speaker and display cable are fed through a cutout in the hinge and into the Main Box.

7.1.4 Screen Front

This part serves as a bezel for the display. It is mounted with seven black M 2×5 countersunk screws to the Screen Back.

7.1.5 Bottom Plate

The Bottom Plate closes the Main Box from the bottom with ten $\mathrm{M} 2 \times 6$ countersunk screws.

7.1.6 Port Covers

The Port Covers are two pieces of powder coated steel that cover the side openings of the Main Box (mounted with two black M 2×5 screws each). You can exchange these to fit a future motherboard or an expansion that requires a different port layout.

7.2 Motherboard

The Motherboard spans the inner width of the device and has outward-facing ports on both sides. It is mounted to the Main Box with four M 2×4 pan head screws. The Motherboard has the following main features:

- Power system: based on the LTC4020 buck/boost converter, it regulates charging of the LiFePO4 batteries and seamlessly switches between wall and battery power.
- System controller: coupled to the power system, an NXP LPC11U24 Cortex-M0 MCU controls an analog monitor chip for the eight battery cells as well as the charger. It is connected to the Processor Module via SPI, and has GPIO lines to the main power rail switchers in
the system. It has a UART (SYSCTL) that the keyboard can talk to directly for issuing power on/off commands and battery status queries.
- DSI to eDP bridge: The SN65DSI86 chip converts the MIPI-DSI output from the Processor Module to an embedded DisplayPort (eDP) signal that the display panel can understand. Some Processor Modules don't make use of this chip, because they can output eDP directly (like the LS1028A) or use an internal HDMI to eDP adapter instead. Please refer to your Processor Module's manual for the details.
- USB 3.0 hub: The Processor Modules themselves have two USB ports. To provide for a total of five USB ports (two internal and three external), there is a TUSB8040 USB hub chip on the motherboard that provides the extra ports. USB load switches on each external port protect the system from too much current draw.
- Sound chip: A Wolfson/Cirrus WM8960 audio DAC (digital-to-analog converter)/amplifier interfaces to the headphone/microphone jack and powers two speakers housed below the main display.
- mPCle slot: An mPCle connector that you can use for expansions like a Wi-Fi card or for an NVMe SSD using an M. 2 adapter.
- M. 2 slot: An NGFF slot (Key M) that can either house an NVMe SSD (solid state disk), or with the LS1028A module, a SATA SSD. With some other Processor Modules, this port is inactive (refer to the Processor Module's manual).

7.2.1 Revised Versions

At the time of writing, 2.5 is the latest motherboard version. It is a revised version of the 2.0 Reform motherboard, and it is compatible with all our Processor Modules. We fixed some
bugs with the initial design and switched parts out based on availability. The main improvements are:

- Lowered headphone lowcut filter for improved bass response
- Replaced Micro-USB with USB-C as the LPC flashing connector
- Lowered power LED brightness
- Fixed current leak through balancing circuit that could bypass missing cells
- Fixed main buck converter enable behavior under low voltage condition
- Fixed charger control circuit that previously required a factory resistor bodge

7.2.2 System Controller

Independent from the main Processor Module, a low-power processor sits on MNT Reform's motherboard. The NXP LPC11U24 is a 32-bit ARM Cortex-M0 processor that uses very little power and is always on as long as there is battery or wall power present. We call this processor the System Controller.

The System Controller runs a program in an endless loop that has the following jobs:

- Powering the individual voltage rails of the system on and off
- Hard resetting the main processor on demand
- Monitoring the voltage of each battery cell
- Balancing battery cells. If a cell is overvolted, charging is halted and the overvolted cells are discharged until they are back to a nominal voltage
- Turning off the system if battery cells are undervolted
- Reporting total current flowing in and out of the batteries
- Turning charge current on or off

Your main way of communicating with the System Controller is with the Keyboard. The Keyboard has, aside from its USB connection to the main processor, a second serial (UART) connection/cable to the motherboard's SYSCTL port. A 57600 bps connection is always established between the Keyboard and the System Controller.

It accepts commands in the form of a single letter followed by carriage return ($0 x 0 d$). A command can also be prefixed with a single argument, a positive integer of up to 4 digits. The most important commands are:

Command	Function
$1 p$	Turn the computer on
$0 p$	Turn the computer off
a	Get current flowing into/out of batteries in mA
v	Get cell voltage statistics
V	Get combined battery voltage
s	Get System Controller state (a message string)
g	Get estimated "fuel gauge" of batteries (percentage)

The individual cell voltages are measured by the Battery Monitor LTC6803IG-4\#PBF and reported via SPI to the System Controller. The total voltage and current are measured by the INA260 chip and reported via ${ }^{2} \mathrm{C}$.

To understand the available commands in more detail, you can take a look at the System Controller's handle_commands() function.

The System Controller is connected to the Processor Module through a SPI interface and through an auxiliary UART. The System Image ships with a kernel module called reform2-lpc which makes battery information available to the OS. The
source code for this module is available in the reform2-Ipcdriver directory of the Reform repository.

7.2.3 Flashing the Firmware

User-Defined Switch
To update (flash) the firmware of the System Controller, you need another computer and a USB-C cable (or, if you have a motherboard older than version 2.5, a Micro-USB cable).

You can find the source code of the firmware and a script that guides you through the flashing process in MNT Reform's source folder reform2-lpc-fw.

On your other computer, execute the following commands:
git clone https://source.mnt.re/reform/reform cd reform/reform2-lpc-fw
./download-fw.sh 25_R2 \# or 20_R3 if you have a \# 2.0 motherboard

```
# (with Micro-USB connector)
```

sudo ./flash.sh

The flash.sh script will interactively guide you through the necessary steps. These are:

1. Open MNT Reform's lid and remove the batteries.
2. Connect the power brick. Be very careful to avoid shorts from this point on.
3. Set DIP switch LPCPROG (LPC Flashing Switch) on MNT Reform's motherboard to "ON".
4. Press button LPCRESET.
5. Connect USB-C (or Micro-USB) cable between MNT Reform's motherboard and your other computer.
6. System Controller's memory appears as a virtual flash drive. The flash.sh script will recognize it and copy the firmware.bin to this virtual drive.
7. Unplug the USB-C or Micro-USB cable.
8. Set DIP switch LPCPROG (LPC Flashing Switch) to "OFF" (labelled " 1 " on the switch).
9. Press button LPCRESET.
10. Disconnect the power brick and reassemble your MNT Reform.

Alternatively, you can build the firmware yourself. Please follow the instructions in the README.md file to do so.

7.2.4 Expansion Port

The Expansion Port U18, labeled "Hack the Planet" is meant for advanced users that want to connect sensors or other peripherals to MNT Reform's system controller. Please note that changing the system controller's program can disrupt the battery charging control loop, potentially causing over- or undercharged cells, resulting in physical damage and/or injury.

Experiment with the system controller only if you know exactly what you're doing and at your own risk.

The Expansion Port features an SPI interface, two analogdigital converters, a UART, JTAG and 3.3V Power. All nonpower pins can alternatively be used as GPIOs.

The following LPC11U24 pins are available at the port:

Pin	Function	Pin	Function
16	GND	15	$3.3 V$
14	MOSI1a	13	USBCON\#
12	RXDa	11	TXDa
10	AD7	9	SCLKa
8	SWDIO	7	AD5
6	TDO	5	TRST\#
4	TDI	3	TMS
2	MISO1a	1	SCK0b

Refer to the motherboard schematic's Power section and the NXP LPC11U24 reference manual for further details.

7.2.5 mPCle Socket

All Processor Modules feature at least one PCle controller which is connected to the mPCle socket U11. The standard use for the mPCle port is a WiFi card or an NVMe SSD (with M. 2 adapter). To install a card, plug it into the socket at an
angle and then press down the opposing side into the latch. To remove the card, just pull on the two protruding metal springs of the latch and the card will pop out.

The reference clock of the mPCle slot is provided by the Processor Module.

7.2.6 M. 2 Socket (Key M)

Some Processor Modules, such as the original i.MX8M module and the RCORE with RK3588, feature a second PCle controller-or in the case of LS1028A, a SATA controllerwhich is connected to the M. 2 socket (J10). The standard use for the port is to install an M. 2 NVMe solid state drive. Plug the SSD disk into the socket and fix it with an M2 screw to one of the three mounting holes that corresponds to the module's size.

The reference clock for the port is generated by U23 on the motherboard.

7.3 Processor Module

When the first edition of this handbook was released, we had only one Processor Module to offer. Now, nearly four years later, there are several of them, each with different features to accommodate individual preferences. We are constantly developing new modules for Reform, the latest drop being RCORE with RK3588-a powerful Processor Module that gives you $4 x$ performant ARM Cortex-A76 cores, $4 x$ power-efficient ARM Cortex-A55 cores, and up to 32 GB RAM.

The Processor Module is plugged into motherboard connector U1 which has 200 pins. If you want to learn more about Reform's Processor Modules, take a look at the schematics and source KiCad projects in our GitLab repository.
If you want to develop your own Processor Module, visit https://source.mnt.re/reform/reform-som-template for a KiCad template and more technical information.

7.3.1 Display Connector

The default display in MNT Reform conforms to the eDP (embedded DisplayPort) standard. Some Processor Modules, such as i.MX8M and RCM4, output a MIPI-DSI signal on its flex connector that is fed into the J 24 connector on the motherboard using the $30 \mathrm{pin}, 0.5 \mathrm{~mm}$ pitch flex cable. The SN65DSI86 chip on the motherboard converts the MIPI-DSI signal to eDP. If you use a different Processor Module that outputs eDP directly, the J24 connection is skipped. Refer to the manual of your module instead.

7.4 Heatsink

The heatsink is a piece of milled aluminum that connects to the silicon die of the main SoC on the Processor Module, with a thermal pad applied on the die. The heatsink is fixed to the motherboard by four $\mathrm{M} 2 \times 12$ screws. The screws are supported by four metal or plastic spacers.

7.5 Keyboard

The keyboard is mounted to the top of the Main Box with six $\mathrm{M} 2 \times 4$ pan head screws. It is powered by an ATmega32U4 8 -bit microcontroller. The controller scans the row/column matrix of keyswitches and reports key presses via USB HID (human interface device) to the motherboard. Each switch has a diode to prevent ghosting, so you can press multiple keys at once. The microcontroller runs a firmware based on LUFA, which is an open source library for implementing USB input devices.

The second role of the keyboard is to serve as a user interface to the LPC system controller on the motherboard, even when the main SoC is turned off. To make this possible, the keyboard connects via a separate UART cable to the motherboards SYSCTL header (J23).

The keyboard can also be taken out of the laptop and used as a standalone USB-C device. To enable this function, turn on the STANDALONE switch near the top right corner. When
using the keyboard in the laptop, this switch has to be turned off.

7.5.1 Keyboard Firmware

You can find the MNT Reform keyboard firmware in the source folder reform2-keyboard-fw.

You can update the firmware of the keyboard on MNT Reform itself, but make sure to read this section in full to avoid ending up in a situation where you have to disassemble the laptop. The full procedure to download and flash the firmware is as follows (in a terminal window):

```
git clone https://source.mnt.re/reform/reform
cd reform/reform2-keyboard-fw
./download-fw.sh 3_US # or 3 if you have a
    # non-US keyboard
    # or 2 if you have an
    # older pre-V3 keyboard
sudo ./flash.sh
```

The flash.sh script will walk you through the necessary steps.

To be able to flash the firmware to the keyboard, its microcontroller has to be in a special programming mode where it identifies as an "Atmel DFU bootloader" USB device. Since the 3.0 revision of the Keyboard, you can put it in programming mode by pressing the Circle key followed by the X key. Note that you won't be able to use the keyboard for typing after this step-so if you're flashing the keyboard inside of the laptop and something goes wrong, you'll need another external USB keyboard to continue the process. So only do this when the flashing script asks you to do so.

To modify the scancodes of individual keys (i.e. to swap keys on the firmware level), you can edit the file matrix.h and rebuild the firmware by typing the "make" command in a terminal. Please refer to the README.md for more details.

7.5.2 Backlight

Most keys have a white light emitting diode (LED) to illuminate the transparent part of the keycaps, making the laser engraved letters visible in darkness. You can control the backlight's brightness via Circle followed by F1 or F2, or use the OLED menu.

7.5.3 Replacing a Keycap

MNT Reform comes with custom MBK Choc Glow keycaps by FKcaps, but you can use any keycaps compatible with Kailh Choc keyswitches. You can pull out individual keycaps with your fingernails-or better, using a keycap puller-and swap them around.

7.5.4 Replacing a Keyswitch

Should a keyswitch ever break, you can replace it with Kailh Choc Brown (CPG135001D02) or Kailh Choc White (CPG135001D03).

The best way to desolder the switch is a desoldering gun. If you don't have one, use a soldering iron and solder wick to remove the solder of one pin. Try to pull out the corresponding side of the switch from the top while continuing to heat the pin. Repeat the same for the other pin and go back and forth until you can remove the switch.

7.6 OLED Module

The OLED display sits on the OLED Module which is connected to the keyboard through a 4-pin, 1 mm pitch flex cable. The communication protocol is $I^{2} \mathrm{C}$. The module is mounted in the Main Box on top of the keyboard with two $\mathrm{M} 2 \times 4$ pan head screws.

If you're feeling creative and want to customize your OLED with text, images or even animations, we've got you covered. Check the MNT Reform source repository and navigate to the reform2-keyboard-fw/kbdgfx-demo directory. This directory contains example code that serves as a starting point for developing your own custom OLED graphics.

7.7 Trackball

The trackball uses an RP2040 microcontroller to convert X and Y movement coordinates from the PAT9125EL optical sensor that is connected via $I^{2} \mathrm{C}$ to the USB HID Mouse protocol. The electronic connection between trackball sensor and controller is made with a 6 -pin 0.5 mm pitch flex cable.

The trackball has five buttons. These make use of the same keyswitches as the keyboard: Kailh Choc Brown (CPG135001D02). The button caps are 3D printed using SLA resin technology. If you want to substitute your own replacements, you can find the STL files for the caps in the MNT Reform source repository. The cup and lid of the trackball are 3D printed using the same method.

Flashing Switch

7.7.1 Trackball Cleaning

From time to time, you should clean dust and debris from the trackball. To do this, carefully lift off the left and right buttons. Then, unscrew the two screws holding the trackball's lid and
remove the ball. Clean the inside of the cup with a soft cloth. Don't use detergents as these can dissolve the cup's material.

7.7.2 Trackball Firmware

You can find the trackball firmware in the source folder reform2-trackball2-fw, except if you have an older version of the trackball that uses an ATmega32U2 controller instead of a RP2040. The older versions firmware is in the reform2-trackball-fw directory. Please refer to its README.md file for building and flashing information.

The current version of the trackball can be flashed using picotool. At the time of writing, picotool is not available as a Debian package, so you have to build it yourself. You can use the included convenience script to do that:

```
./install-picotool.sh
```

Then you are ready to download and flash the firmware:
./download-fw.sh
./flash.sh
If you want to modify the behavior of the trackball, refer to the README.md file in the firmware directory.

7.8 Trackpad

The trackpad integrates an Azoteq TPS65-201 capacitive sensor which reports coordinates to the microcontroller via the SPI protocol.

7.8.1 Trackpad Firmware

You can find the trackpad firmware in the source folder reform2-trackpad-fw.

Same as the keyboard, the trackpad firmware is based on the LUFA USB device library and implements a USB HID Mouse.
To update the firmware, the MCU has to be in bootloader USB mode. If you have a recent enough trackpad firmware, the flashing script can put it in this mode directly. If this doesn't work, you have to open your MNT Reform and toggle the programming DIP switch SW7 on the trackpad to "ON" and press the reset button SW6. The trackpad will reappear as an "Atmel DFU bootloader USB" device. You can then download and flash new firmware by executing:

```
./download-fw.sh
./flash.sh
```

If you want to modify the behavior of the trackpad, refer to
the README.md file in the firmware directory.

7.9 Exchanging Trackball and Trackpad

You can swap the Trackball for the Trackpad module and vice versa. To do this, first disconnect the wall power and flip MNT Reform on its back. Unscrew the Bottom Plate and remove all battery cells. Unplug the side of the internal USB cable that is connected to the installed module. Then, unscrew the module's case mounting screws (four M 2×4 pan head screws for the Trackball, two M2×4 pan head screws for the Trackpad) and pull out the module.

Reverse the process to install the new input device. The Trackball is inserted so that its four mounting holes line up with four matching holes in the Main Box. The Trackpad slides into a slot in the Main Box with one end first (the end without mounting tabs) and is then mounted to the Main Box with two screws that go through the tabs on the other end. After mounting the desired module, reconnect the internal USB cable to it.

7.10 Battery Packs

MNT Reform has two identical battery packs, referred to as the Left and Right packs. Each pack holds four 18650 LiFePO4 cells (3.2V). The two packs are mounted to the Main Box with four $\mathrm{M} 2 \times 4$ pan head screws for each battery pack.
You may be tempted to try cells of other chemistries like LiIon or NiMH, but never do this, as these are incompatible.

Only use LiFePO4 cells with MNT Reform!

When inserting battery cells, make sure that the positive and negative poles are facing in the correct direction. The poles are marked on the silkscreen of the battery pack PCBs.

All 8 cells are connected in series. When fully charged at 3.6 V , the total voltage of the cells can add up to 28.8 V . Make
sure not to bridge/short any battery clips to the case or neighboring clips or pins, as this will immediately cause sparks and burnt traces.

Remove all battery cells before doing any work inside MNT Reform to prevent damage from accidental discharge.

LiFePO4 cells are safely discharged to 2.5 V . Please make sure not to discharge the cells further. Since 2022, MNT Reform ships with protected battery boards. These allow you to leave your MNT Reform turned off/uncharged for as long as you need.

7.10.1 Compatible Battery Cells

The following table lists compatible LiFePO4 cells, but any LiFePO4 chemistry cell of 18650 size should work. It is not recommended to mix cells of different capacities, as the lowest capacity cell will dictate the lowest safe point of discharge.

Brand	Model	Capacity
Eremit	18650 LiFePO4	2000 mAh
JGNE	MH48108	1800 mAh
IFR	18650 LiFePO4	1400 mAh
LithiumWerks	APR18650M1-B	1100 mAh
Sony Konion	US18650FTC1	1100 mAh

7.11 Compatible Displays

MNT Reform was designed to be compatible with a number of 13.3 inch (diagonal) 1920×1080 pixel eDP displays. We tested the following display models successfully:

Brand	Model
Innolux	N125HCE-GN1 (Center Connector)
Innolux	N125HCE-GN1 (Side Connector)
Innolux	N125HCE-GPA (glossy or matte)
BOE	NV125FH1-N82
AU Optronics	B125HAN02.2

Chapter 8

Advanced Topics

A computer is a complex system where hardware and software interact, and sometimes, unpredicted problems may appear. Most issues can be fixed, and in this chapter we will show you how.
This is for advanced users only. If you are unsure about what you are doing, we encourage you to get in touch with our MNT Community or our email support (support@mntre.com).

8.1 Troubleshooting

There are some steps you can try if MNT Reform should stop booting. As always, before working with MNT Reform internals, first disconnect the internal battery and external power and peripherals.

8.1.1 Boot Issues

What can you do if your MNT Reform doesn't boot?
There are several steps you can take to determine the cause.

First of all, check if it has power. If you are in luck, a cable or a connector is just loose and you can plug it back in.

If this doesn't work, take a look at the OLED screen. Does it show anything when you press the Circle key for at least 2 seconds? If not, this could have several reasons: the OLED module or the two cables of the keyboard may not be fully connected. It is also possible that the keyboard or the mainboard are defective. You can check the functionality of your keyboard by taking it out of the laptop, turning the STANDALONE switch on and connecting it to another computer. If it doesn't work on another computer, then the keyboard is most likely the reason why your Reform doesn't boot.

If the keyboard is working, but your MNT Reform still doesn't boot, the next step would be to make sure the SD card is functional and inserted correctly. If that doesn't fix your boot issue and you have another computer at hand, install the latest System Image on your SD card. Refer to the chapter "Software" and the section "Flashing the System Image" in this handbook.

Insert the freshly flashed SD card and try to boot MNT Reform. If this isn't successful, the motherboard or the Processor Module could be defective. If you have another Processor Module and knowledge of how to swap it, you could try this. We recommend getting in touch with our customer support. You have a 2-year warranty on your device. Warranty repairs are free within this period. Please refer to our FAQ (https://mntre.com/faq.html) for more details.

8.1.2 Serial Console

If you have good Linux knowledge and surmise the boot issue is not hardware related, you can try fixing it using the serial console.

The motherboard connectors labeled S1 and S2 are serial ports (UART) to which U-Boot and the Linux kernel output
diagnostic information on startup. The correct serial port depends on your Processor Module:

Module	Port	Baud
i.MX8MQ	S1	115200
i.MX8MPlus	S1	115200
LS1028A	S1	115200
RCM4-BPi/A311D	S2	115200
RCM4-RPi	S1	115200
RK3588	S1	1500000

Wire up a 3.3V USB-to-UART adapter to the following pins of connector J18 (S1) or J20 (S2):

Pin	Function
1	UART1_TXD, connect to RX of your adapter
2	UART1_RXD, connect to TX of your adapter
3	GND, connect to GND of your adapter

Then, use a terminal program such as tio on your host computer:
tio /dev/ttyUSBO -b 115200 \# Check Module manual \# for baud rate

If you then switch on Reform (powered by the wall adapter) with the provided SD card inserted, you should see the U-Boot console in tio.

8.1.3 Electronics Repair

Before attempting an electronics fix, please contact our customer support at support@mntre.com. Additionally, please consult the MNT Community forum (https://community. mnt.re) for similar issues. Check our repair guides if you are knowledgeable with electronics. Open the respective KiCad file, for example the motherboard file, and take a look at the
schematics and PCB layout. You can trace the power rails and measure them at different points on the board. You need a digital multimeter for this.

The Reform will accept DC power between 9 and 32 volts into its barrel jack that is marked J1 on the motherboard. The barrel plug that the Reform accepts has an outer diameter of 5.5 mm and an inner diameter of 2.1 mm with a positive inner contact (IEC 60130-10:1971 Type A). The nominal input voltage is 24 V . If you can't measure the input voltage on R49, check if fuse F1 is blown.

Either wall or battery power will be regulated to $\sim 29 \mathrm{~V}$ by the buck-boost regulator/charger LTC4020 and output to the main system regulators. U14 is the always-on 3.3V regulator that powers critical chips like the System Controller (LPC11U24, U18). You can confirm LPC_VCC power with 3.3V on J22 pin 15.
Two white indicator LEDs on the motherboard, D11 and D12, signal that 3.3 V and 5 V rails are turned on, respectively. Because of the level shifters U28 and U8, booting from SD card requires both 3.3 V and 1.8 V rails to work. You can measure 1.8 V on C 130 , for example.

The USB hub U9 and the MIPI to eDP converter U10 also need 1.2V power to work (measure on C37). The display itself requires the 3V3_PWR_AUX (3.3V) and USB_PWR (5V) rails to be switched on by the System Controller.

8.1.4 System Controller

The System Controller has to have working firmware to turn on the main power rails. If it is not responding to commands from the OLED menu, the first thing you can do is pressing the LPC_RST button on the motherboard to reset the System Controller.

For debugging, you can use a UART adapter on SYSCTL header J23 to talk to the System Controller directly (57600
baud 8N1). To do this, you'll need to solder/crimp an adapter cable with a JST-PH plug.

8.1.5 Software Issues

If you suspect software issues, run the reform-check command (see "Software" chapter, "Reform Tools" section in this handbook).

8.2 System Boot

Unlike a PC that uses BIOS, Reform utilizes U-Boot, a bootloader commonly used on ARM processors. At the time of writing, Reform only supports ARM based modules.

The Processor Module will usually try to load boot code from the SD card, possibly depending on the setting of a DIP switch on the your specific module. MNT Reform comes with U-Boot on the SD Card. Some MNT Reform Processor Modules can boot directly from other media such as eMMC flash. Refer to the module documentation for further information.

U-Boot is like a mini operating system and shell that allows you to inspect parts of the system (like PCle, USB devices or Ethernet) and set up parameters to be passed to the real operating system kernel such as Linux, and start it. Every module has its own U-Boot version, specifically adapted for Reform. The sources and build instructions for all versions can be found at: https://source.mnt.re/reform

U-Boot needs 3 files to boot Linux:

- The Linux kernel itself, named vmlinuz-...-reform2-arm64.
- The device tree blob (DTB). The file has a Processor Module specific file name ending with .dtb. The device tree is a data structure that lists the addresses of and parameters for all the devices in the system that Linux needs to initialize drivers for.
- U-Boot looks for a file called boot.scr on the SD card, which is a script of commands that performs the actual loading of the OS. This script is normally managed by Debian and has a binary header. Usually, you never need to edit it yourself. If you really need to and know what you're doing, a tool called mkimage is required to update it.

Theoretically, you can boot other operating systems and Linux distributions besides Debian, such as FreeBSD, NetBSD, OpenBSD—if they include all necessary drivers for your Processor Module and provide an extlinux. conf file for UBoot. Refer to https://docs.u-boot.org for details. Booting another Linux distribution can be achieved by combining the MNT Reform Linux kernel and DTB on the boot partition with the distribution's root file system extracted to the second partition.

Chapter 9

Schematics

All of our Reform-related schematics, design files and documentation are publicly available on our GitLab instance:
https://source.mnt.re/reform/reform
All folders that have "pcb" in their name contain KiCad projects that you can explore interactively.

9.1 Motherboard Schematics

Up to 70 mA consumed
by 5 SI bridge
Up to $780 \mathrm{~mA}(1)$
consumed by USB hub

Engineer: Lukas

https://mntre.com
MNT Research GmbH
Sheet: /Reform 2 Powe

MNT Research GmbH
Sheet: /Reform 2 Power/Reform 2 Regulators/
File: reform2-regulators.kicad_sch
Title: Reform 2 Regula

Title: Reform 2 Regulators

Size: A4	Date: $2023-02-13$
KiCad E.D.A.	kicad $7.0 .6+$ dfsg-1

https://mntre.com
MNT Research GmbH
Sheet: /Reform 2 SD Card/
File: reform2-sd.kicad_sch

9.2 Motherboard Bill of Materials

Designator	Qty	Value	Brand	Part Number
BT1	1		Keystone	3000
C1 C4-C5	17	1uF	Taiyo Yuden	UMK107BJ105KA-T
C32 C73				
C86 C88				
C100 C111				
C114				
C129-C130				
C141				
C145-C146				
C162-C163				
C2 C7 C9	64	0.1uF	Yageo	CC0603JPX7R9BB104
C11-C15				
C20-C21				
C27-C30				
C43				
C49-C50				
C53-C57				
C59-C61				
C66-C67				
C70				
C74-C77				
C80				
C84-C85				
C87 C89				
C101 C103				
C105-C110				
C113 C115				
C118-C119				
C135-C136				
C138 C140				
C142-C144				
C149 C154				
C156 C158				
C165-C166				
C168-C169				
C3 C31	2	0.33uF	TDK	C1608X7R1H334K080AC

Designator	Qty Value		Brand	Part Number
C6 C33 C35	6	4.7uF	TDK	C1608X5R1V475K080AC
C139 C151				
C170				
C8 C10 C48	6	18pF	Yageo	CC0603JRNPO9BN180
C51 C62				
C98				
C16-C17	2	100uF	UCC	EMZR500ARA221MHA0G
C18-C19	2	220uF	UCC	EMZR500ARA221MHA0G
C22-C26	9	0.1uF	Yageo	CC0603JPX7R9BB104
C39-C42				
C34 C37	23	10uF	Murata	GRM188R6YA106MA73D
C46-C47				
C63 C69				
C71-C72 C81				
C90-C91				
C99 C112				
C120				
C131-C134				
C137 C150				
C155 C164				
C167				
C36 C38	2	6.8pF	Vishay	VJ0603A6R8DXQCW1BC
C44 C82	4	2.2uF	Taiyo Yuden	UMK107BBJ225KA-T
C125 C160				
C45	1	33 nF	KEMET	C0603C333J4REC7411
C52 C58	10	10nF	KEMET	C0603C103K5RAC3190
C102 C104				
C116-C117				
C128 C148				
C152-C153				
C64 C68	4	2nF	Murata	GRM1885C1H202JA01D
C78-C79				
C65	1	680pF	KEMET	C0603C681J5GACTU
C83 C121	5	47uF	Murata	GRM188R60J476ME15D
C123-C124				
C126				
C122 C161	2	100uF	Panasonic	EEE-FTH101XAP
C127 C147	2	220uF	Murata	GRM32ER60J227ME05L
C157 C159	2	470nF	Taiyo Yuden	TMK107B7474KA-TR
D1	1		Diodes, Inc.	BZT52C10-7-F
D2 D29-D30	3		Nexperia	BAT46WJ,115

Designator	Qty Value	Brand	Part Number
D3-D4 D6	3	Diodes, Inc.	SBR0560S1-7
D5	1	ROHM	RBR3MM60ATFTR
D7	1	Diodes, Inc.	BZT52C6V2-7-F
D8	1	ROHM	SML-D12Y1WT86
D9	1	ROHM	SML-D12Y1WT86
D10	1	Littelfuse	SP0503BAHT
D11	1	ROHM	SMLEN3WBC8W1
D12	1	ROHM	SMLEN3WBC8W1
D13	1	Vishay	SMAJ36CA-E3/5A
D14	1	AVX	SD0603S040S0R2
D15-D16	2	Vishay	BZX584C3V3-G3-08
D17-D19	8	Nexperia	PMEG60T10ELRX
D24-D28			
D20-D21	2	MCC	SK54A-LTP
D22	1	ROHM	SMLEN3WBC8W1
D23	1	ROHM	SMLEN3WBC8W1
F1-F3	3	Littelfuse	0157004.DR
FB1-FB2	7	Murata	BLM18PG221SH1D
FB5-FB9			
FB3-FB4	14	Murata	BLM18KG101TN1D
FB10-FB12			
FB14-FB22			
H1	1	Wurth	9774020243 R
H22	4	Wurth	9774025243 R
H24-H25			
H27			
J1	1	Würth	694106301002
J2	1	Molex	504050-0591
J3	1	TE	1775059-1
J4	1	Wurth	685119134923
J5-J6 J17	3	Wurth	692121030100
J7	1	CUI	SJ-43516-SMT-TR
J8	1	Korean	TYPE-C-31-M-12
		Hroparts	
J9	1	JST	B4B-PH-K-S(LF)(SN)
J10	1	TE	1-2199230-6
J11	1	Molex	48099-5701
J12	1	Harwin	M40-3200845R
J13	1	Molex	504050-0591
J14	1	JST	B4B-PH-K-S(LF)(SN)
J15	1	Hirose	FH12-33S-0.5SH(55)

\(\left.$$
\begin{array}{llll}\hline \text { Designator } & \text { Qty Value } & \text { Brand } & \text { Part Number } \\
\hline \text { J16 } & 1 & & \text { Generic }\end{array}
$$ \begin{array}{l}3P 2mm pitch THT

header\end{array}\right]\)| Wurth |
| :--- |\quad| 61300311021 |
| :--- |
| J18 |

Designator	Qty Value	Brand	Part Number	
R2 R9 R45	16	$10 \mathrm{k} \Omega$	Yageo	RC0603FR-0710KL
R54				
R62-R63				
R83-R85				
R95 R113				
R115 R128				
R161 R172				
R196				
R3 R8 R46	16	$100 \mathrm{k} \Omega$	Vishay Dale	CRCW0603100KJNEAC
R56 R58 R82				
R86 R94				
R103 R120				
R160				
R178-R179				
R181				
R188-R189				
R4-R6 R55	8	$1 \mathrm{M} \Omega$	Yageo	
R61 R96-R97				RC0603FR-071ML
R153				
R10-R16	9	100Ω	Vishay Dale	CRCW0603100RFKEAC
R175-R176				
R17-R24	8	$3.3 k \Omega$	Vishay Dale	CRCW06033K30FKEAC
R25-R32	8	15Ω	TE	CRGCQ2512J15R
R33				Connectivity

Designator		Value	Brand	Part Number
R49-R50	2	0.01Ω	ROHM	LTR18EZPFU10L0
R53 R57 R64	3	51 k ת	Yageo	RC0603FR-0751KL
R59	1	$\begin{aligned} & 9.09 \mathrm{k} \Omega \\ & 1 \% \end{aligned}$	Vishay Dale	CRCW06039K09FKTA
R60	1	$\begin{aligned} & 90.9 \mathrm{k} \Omega \\ & 1 \% \end{aligned}$	Vishay Dale	CRCW060390K9FKEA
R66 R112	2	220Ω	Yageo	RC0603FR-07220RL
R67 R110 R183-R184	4	$1 \mathrm{k} \Omega$	Yageo	RC0603FR-071KL
R70 R72 R114 R121 R138-R139 R150-R151	8	33Ω	Vishay Dale	CRCW060333R0FKEAC
R79	1	$100 \mathrm{k} \Omega$ NTC	Vishay / BC	NTCS0603E3104FXT
R90-R93	4	27Ω	Yageo	RC0603FR-0727RL
R117-R119 R168-R171	7	10k- DNP	Yageo	RC0603FR-0710KL
$\begin{aligned} & \text { R123 R148 } \\ & \text { R198-R199 } \end{aligned}$	4	49.9Ω	Yageo	RC0603FR-1049R9L
R140	1	680Ω	Yageo	RC0603FR-07680RL
R156	1	$1 \mathrm{M} \Omega$	Yageo	RC0603FR-071ML
R167	1	62Ω	Yageo	RC0603FR-0762RL
R173	1	$49.9 \mathrm{k} \Omega$	Vishay Dale	CRCW060349K9FKEAC
R192	1	$27 \mathrm{k} \Omega$	Bourns	CR0603-FX-2702ELF
SW1 SW3	2		Apem	DM01
SW2 SW6	2		USAKRO	UK-B0206-G3.8-250-JZ
U1	1		TE	1717254-1
U2	1		Analog Devices	LTC4020EUHF\#PBF
U3	1		Cirrus Logic	WM8960CGEFL/V
U4	1		Analog Devices	LTC6803IG-4\#PBF
U5	1		NXP	PCF8523T/1,118
U6	1		TI	INA233
U7	1		Texas Instruments	LM2677SX-5
U8	1		Texas Instruments	TXS0108EPW
U9	1		Texas Instruments	TUSB8040PFP

Designator	Qty Value	Brand	Part Number
U10	1	Texas	SN65DSI86IPAPQ1
		Instruments	
U11	1	Molex	67910-5700
U12	1	Texas	LM2677S-3.3/NOPB
		Instruments	
U13 U19	2	Texas	TLV62568DBVR
		Instruments	
U14	1	Texas	LMR16006YQ3
		Instruments	
U17	1	Texas	TLV1117-18CDCYR
		Instruments	
U18	1	NXP	LPC11U24FBD48-301
U20 U24	3	Diodes, Inc.	AP22815AWT-7
U27			
U21	3	Littelfuse	SP3012-06UTG
U25-U26			
U22	1	Texas	TPD12S521
		Instruments	
U23	1	IDT	5V41066PGGI8
U28	1	Texas	SN74AVC1T45
		Instruments	
Y1	124 MHz	Seiko Epson	X1E0000210264
Y2	112 MHz	Abracon	$\begin{aligned} & \text { ABM8AIG-12.000MHz- } \\ & 2-T \end{aligned}$
Y3	125 MHz	Abracon	ABM8AIG-25.000MHz-R40-4-T
Y4	132.768	ECS	ECS-.327-7-34B-TR
	kHz		

9.3 Keyboard Schematics

License: CERN-OHL-S 2.0
Engineer: Lukas F. Hartmann

9.4 Keyboard Bill of Materials

Designator	Qty Value		Brand	Part Number
C1-C2	2	18pF	Yageo	CC0603JRNPO9BN180
C3 C5	7	1uF	Yageo	CC0603KRX5R8BB105
C8-C9				
C11-C13				
C4 C6	2	0.1uF	Yageo	CC0603KRX7R9BB104
C7 C10	2	4.7uF	Murata	GRM188R61E475KE11D
D1-D35	80		MDD	1N4007WS
D37-D80				
D82				
D83	1		UMW	SS26
D84-D163	80		Meihua	MHT192WDT-C2
D164	1		MDD	BZT52C5V6
F1	1		TECHFUSE	nSMD100-16V
FB1	1		Murata	BLM18PG121SN1D
H1	1		DNP	DNP
H2	1		DNP	DNP
H3	1		DNP	DNP
H4	1		DNP	DNP
H5	1		DNP	DNP
H6	1		DNP	DNP
J1	1		JST	$\begin{aligned} & \text { S4B-PH-SM4-K- } \\ & \text { TB(LF)(SN) } \end{aligned}$
J2	1		JST	$\begin{aligned} & \text { S4B-PH-SM4-K- } \\ & \text { TB(LF)(SN) } \end{aligned}$
J3	1		XFCN	F1002-B-04-20T-R
J4	1		Korean Hroparts	TYPE-C-31-M-12
J5	1		DNP	DNP
L1	1	10uH	Sunlord	WPN4020H100MT
R1-R2	5	22Ω	Yageo	RC0603FR-0722RL
R17-R19				
R3 R16	2	$10 \mathrm{k} \Omega$	Yageo	RC0603JR-0710KL
R4	1	0Ω	Yageo	RC0603JR-070RL
R5-R6 R9	3	$4.7 \mathrm{k} \Omega$	Yageo	RC0603JR-074K7L
R7	1	62 k ת	Yageo	RC0603FR-0762KL
R8	1	604k Ω	Yageo	RC0603FR-07604KL
R10	1	715k Ω	Yageo	RC0603FR-07715KL
R11	1	$1 \mathrm{M} \Omega$	Yageo	RC0603JR-071ML

Designator	Qty Value		Brand	Part Number
R12	1	$54.9 \mathrm{k} \Omega$	Yageo	AC0603FR-0754K9L
R13-R14	2	$5.1 \mathrm{k} \Omega$	Yageo	RC0603FR-075K1L
SW1-SW35	80		Kailh	CPG135001D02
SW37-SW80				
SW82			Dongguan	DSIC01LSGET
SW36 SW84	2		Guangzhu	
		1	XKB	TS-1185EC-C-D-B
SW83	1		Microchip	ATMEGA32U4-AU / RC
U1	1		Texas	TPS61185RGET
U2	1		Instruments	
		Microchip	MCP1700T-3302E/TT	
U3	1	UMW	USBLC6-2SC6	
U4	1	16MHz Yangxing	X322516MRB4SI	
Y1				

9.5 OLED Schematics

SSD1306 OLED
Circuit based on Adafruit 931

告

Designator	Qty Value		Brand	Part Number
C1-C2	5	1uF	Yageo	CC0603KRX5R8BB105
C5-C7				
C3-C4	2	10uF	Taiyo Yuden	LMK107BJ106MALTD
H1	1			DNP
H2	1			DNP
J1	1		XFCN	F1002-B-04-20T-R
R1	1	$330 k \Omega$	Yageo	RC0603FR-07330KL
R2	1	$4.7 \mathrm{k} \Omega$	Yageo	RC0603FR-074K7L
U1	1		Enrich	ENH-OB00910003
			Electronics	

9.6 Trackball Schematics

9.7 Trackball Bill of Materials

Designator	Qty Value		Brand	Part Number
C1 C6	2	27pF	Yageo	CC0603JRNPO9BN270
C2-C4	19	0.1 FF	Yageo	CC0603JPX7R9BB104
C7-C19				
C21-C23				
C5 C24	2	4.7uF	Murata	GRM188R61E475KE11D
C20	1	1uF	Yageo	CC0603KRX5R8BB105
D1-D5	5		OPSCO	SK6805-EC15
D6	1		Nexperia	BZT52-B5V6J
F1	1		TECHFUSE	nSMD100-16V
FB1	1		Murata	BLM18PG221SH1D
J1	1		JST	B4B-PH-K-S(LF)(SN)
J2	1		Hirose	FH12-6S-0.5SH(55)
R1	1	$1 \mathrm{k} \Omega$	Yageo	RC0603FR-071KL
R2-R3	2	$10 \mathrm{k} \Omega$	Yageo	RC0603JR-0710KL
R4 R10-R11	3	$4.7 \mathrm{k} \Omega$	Yageo	RC0603FR-074K7L
R8-R9	2	27.4Ω	Yageo	RC0603FR-0727R4L
SW1-SW5	5		Kailh	CPG135001D03
SW6	1		XKB	TS-1185EC-C-D-B
SW7	1		Dongguan	DSIC01LSGET
			Guangzhu	
U1	1		Texas	SN74LV1T34DCKR
			Instruments	
U2	1		Texas	TLV75533PDBVR
U3	1		Instruments	
U4	1		Raspberry Pi	RP2040
U5	1		Winbond	W25Q32JVSS
Y1	1	$12 M H z$	Seiko Epson	Q22FA23V0041800
		$18 p F$		

9.8 Trackball Sensor Schematics

9.9 Trackball Sensor Bill of Materials

Designator	Qty Value	Brand	Part Number	
C1	1	1uF	TDK	C1608X8L1C105K080AC
C2	1	0.1uF	Yageo	CC0603JPX7R9BB104
C3	1	10uF	Taiyo Yuden	LMK107BBJ106KALT
J1	1		Hirose	FH12-6S-0.5SH(55)
R1	1	0Ω	DNP	DNP
U1	1		PixArt	PAT9125EL
			Imaging	

9.10 Trackpad Schematics

9.11 Trackpad Bill of Materials

Designator	Qty Value	Brand	Part Number	
C1-C2	2	18pF	Yageo	CC0603JRNPO9BN180
C3 C5	2	0.1 uF	Yageo	CC0603JPX7R9BB104
C4	1	1uF	Taiyo Yuden	UMK107BJ105KA-T
D1	1		Nexperia	BZT52-B5V6J
F1	1		Bel Fuse	OZCJ0075AF2E
FB1	1		Murata	BLM18PG221SH1D
J1	1		JST	B4B-PH-K-S(LF)(SN)
J2	1		Hirose	FH12-6S-0.5SH(55)
R1-R2	2	$10 \mathrm{k} \Omega$	Vishay Dale	CRCW060310K0JNEAC
R8-R9	2	22Ω	Yageo	RT0603DRD0722RL
R10-R11	2	$4.7 \mathrm{k} \Omega$	Yageo	RC0603FR-074K7L
SW6	1		Diptronics	PTLP2
SW7	1		Apem	DM01
U1	1		Microchip	ATMEGA32U2-AU
U2	1		Texas	TLV75533PDBVR
			Instruments	
U3	1		STMicro	USBLC6-2SC6
Y1	1	$16 M H z$	Abracon	ABM8AIG-16.000MHz-
				4-T

9.12 Battery Pack Schematics

https://mntre.com
License: CERN OHL-5 2.0
Engineer: Lukas F. Hartmann
MNT Research GmbH
Sheet:
File: reform2-protected-batterypack-pcb.kicad_sch
Title: MNT Reform Protected Battery Pack

9.13 Battery Pack Bill of Materials

Designator	Qty Value		Brand	Part Number
C1-C4	4	0.1uF	Generic	0603 0.1uF 50V
J1	1		Molex	$504050-0591$
Q1-Q8	8		Nexperia	PMV50ENEAR
R1-R4	4	330Ω	Generic	0603 330Ohms
R5-R8	4	$1.2 \mathrm{~m} \Omega$	Generic	12061.2 mOhms
				$(0.120 h m s) 1 \%$
R9-R12	4	$1 \mathrm{k} \Omega$	Generic	06031 kOhms
U1-U4	4		Keystone	54
U5	1		Nisshinbo	R5617L020FF
U6	1		Nisshinbo	R5617LO20FF
U7	1		Nisshinbo	R5617L020FF
U8	1		Nisshinbo	R5617L020FF

9.14 Assembly Parts

Part	Qty	Brand	Part Number
USB/SYSCTL Cable JST-PH 4P	3	MNT Research	MREFCBLU20R01
Speaker Cable JST-PH 4P eDP I-PEX to DuPont	1	MNT Research	MREFCBLS20R01
2mm 2×15P Cable	1	MNT Research	MNT190722001
Sensor Cable 6P 50mm 0.5mm Pitch	1	Würth	687606050002
OLED Cable 1mm Pitch 50mm	1	Elektronik Würth	Elektronik

Part	Qty	Brand	Part Number
Left Port Cover Steel Black	1	MNT Research	MREFCPCL20R01
Right Port Cover Steel Black	1	MNT Research	MREFCPCR20R01
Screen Back Al6061 Black	1	MNT Research	MREFCSCB20R01
Screen Front AI6061 Black	1	MNT Research	MREFCSCF20R01
Right Hinge	1	Smooth	SMS-ZZ-219-L
Left Hinge	1	Sechnology	Smooth

Part	Qty	Brand	Part Number
Keycap 1.25U	4	FKcaps	MBK Choc Glow
Keycap 1.5U	5	FKcaps	MBK Choc Glow
Keycap 1.75U Convex	2	FKcaps	MBK Choc Glow
Keycap 1.5U Convex	2	FKcaps	MBK Choc
Keycap 2U Con 24V 2.5A	1	FKcaps	MBK Choc
Power Supply	Mean Well	GST60A24	
60W			
Power Cable IEC 60320	1	Depending on	-
C14		Region	
Battery Cell LiFePO4 1	Eremit	IFR-18650	
18650			

Chapter 10

Online Resources

Get the latest news and additional resources for MNT Reform at:

- The MNT Research website: https://mntre.com
- The MNT Community forum: https://community.mnt.re
- Source code repositories (including electronics design files and 3D models for printing and laser cutting): https://source.mnt.re/reform
- MNT Research on Crowd Supply: https://www. crowdsupply.com/mnt
- MNT Research Shop: https://shop.mntre.com
- For email support, contact: support@mntre.com
- Modularity explained (including a comparison table of Processor Modules): https://mntre.com/modularity. html
- PDF and web versions of manuals, including this handbook: https://mntre.com/docs-reform.html
- iFixit Maintenance Guides for MNT Reform: https : //www.ifixit.com/Device/MNT_Reform

You can join fellow MNT Reform enthusiasts in the official IRC channel \#mnt-reform on irc.libera.chat.

Discover more about the main software building blocks of the MNT Reform system:

- Debian GNU/Linux: https://debian.org
- U-Boot: https://docs.u-boot.org/en/latest/
- Sway: https://swaywm.org
- Wayfire: https://wayfire.org

Chapter 11

Credits

> The MNT Reform Operator Handbook, Second Edition. Berlin, March 2024 . Written by Lukas F. Hartmann and Anri Paul Hennies. Published by MNT Research GmbH.
> Concept, Electronics, Software Lukas F. Hartmann Industrial Design Ana Beatriz Albertini Dantas
> Quality \& Assembly, Sleeve Design Greta Melnik
> Handbook Design 100rabbits, Lukas F. Hartmann
> Additional Editing Brendan Nystedt, Liaizon Wakest, Johannes Schauer Marin Rodrigues
> 3D Illustration Paul Klingberg
> Accounting Christian 'plomlompom' Heller
> Debian Integration \& Tooling Johannes Schauer Marin Rodrigues
> Contributions \& Thanks Patrick Wildt, Sigrid Solveig Haflínudóttir, Cinap Lenrek, Stanley Lieber, Dirk Eibach, Jacqueline Leykam, Neil Armstrong, John Bliss, Chartreuse, Norman Feske \& Stefan Kalkowski (Genode), Valtteri Koskivuori, Jack Humbert, Nanocodebug,

Neelfyn, Maximilian Voigt, Helen Leigh, Daniel Amor, Sergio Amor, F. Schneider, Zoé \& Elen (Fully Automated), Boundary Devices, Timonsku, Lukas Stach, Marek Vasut, Christian Gmeiner, Daniel Stone, Simon Ser, Chris Healy, Drew Fustini, Jonas Haring, Philip Steffan, Florian Hadler (Interface Critique), Felix Bayer, LiOn, Schneider, Sven Gebhardt, Jan Varwig, Gabriel Yoran, Martin Meyerhoff, GyrosGeier, Philipp Dikmann, Michael Christophersson, Markus Angermeier

Therapy Dog Tina
Crowdfunding Partner Crowd Supply
Additional Funding NLNet
Printed Circuit Boards PCBWay, JLCPCB
Milling JPR
Inter Font @rsms
Lab Tools Rigol DS1054Z, Fluke 117, Weller WD-1, Puhui T-962C, AmScope SM-4T, BCN3D Sigma R17, Formlabs Form2, Epilog Mini 18, Prusa i3 MK3S+

Software Debian GNU/Linux, KiCad, Inkscape, GIMP, Emacs, Vim, GitLab, LUFA, MicroBuilder, Blender, FreeCAD, OpenSCAD, Fusion, Cura, Sphinx, Pandoc, XeTeX, Scribus
© 2018-2024 MNT Research GmbH, Fehlerstr. 8, 12161 Berlin Managing Director: Lukas F. Hartmann
Registergericht: Amtsgericht Charlottenburg
Aktenzeichen: HRB 136605 B
VAT ID: DE278908891
WEEE: DE 33315564
Web: https://mntre.com
MNT Reform is Open Source Hardware certified by OSHWA (UID DE000017).

The sources for this handbook and most MNT Reform software components (check repositories for details) are
licensed under GNU GPL v3 or newer. The artwork is licensed under CC BY-SA 4.0. The MNT Reform hardware design files are licensed under CERN-OHL-S 2.0. The MNT symbol is a registered trademark of MNT Research GmbH.

PinguinDruck.de

NWREFBM

[^0]: ${ }^{1}$ https://community.mnt.re

[^1]: ${ }^{1}$ If you happen to own one of the first MNT Reform laptops, you might have noticed a slightly unusual layout of the keyboard. Back in the day, we simplified the traditional typewriter-based layout so that the keyboard could be constructed using only two distinct key shapes that were available to us (square and 1.5 x). The biggest difference was the split space bar: instead of one long key, there were two $1.5 x$ wide space keys, with left and right Alt keys sandwiched between them. However, this proved to be too experimental a layout for some people to get used to.

[^2]: ${ }^{2}$ Note that this order is only valid for the Protected Battery Boards.

[^3]: ${ }^{1}$ The "GNU Bourne-Again Shell".

[^4]: ${ }^{2}$ sudo means "switch user and do".

[^5]: ${ }^{3}$ The kernel is the privileged core of the operating system.

[^6]: ${ }^{4}$ eth0 is the built-in Ethernet; wlp1s0 is a Wi-Fi interface.

[^7]: ${ }^{1}$ SUPER is the key with the MNT Research logo next to the HYPER key.

